

Blazars: Spectral Energy Distribution

Radio IR Opt UV X MeV GeV

3 samples of blazars (Einstein slew survey, 1-Jy BL Lacs, 2-Jy FSRQs)

Division into radio luminosity bins

Average of luminosities in selected bands

Fossati et al. (1998)

Some caveats

Samples: 3 "shallow" samples (2 radio, 1 X-rays). Total: 126 sources Likely the most beamed and powerful sources.

Gamma-ray data biased?

Only 33 sources, mostly caught in <u>flaring state</u> <u>No TeV data (only two sources known in 1998!)</u>

Blazars are extremely variable: Only an <u>average</u> meaning!

1) GeV \implies FSRQs; TeV \implies BL Lacs

The extragalactic EGRET sky

3rd EGRET Cat., Hartman et al. 1999 Revision in Nandikotkur at al. 2007

67 (high-conf.)+21 (low-conf.)

AGNs:

76 FSRQs

21 BL Lacs (17 LBL; 4 HBL)

The extragalactic VHE sky

20 BL Lacertae (18 HBL + 2 LBL) 1 radiogalaxy (M87, 16 Mpc) 1 FSRQs (3C279, z=0.536)

\$-03-07	- Up-to-date	plot available	at http://www.	.mppmu.mpg.de-	-rwagne risources/

Name	Redshift
Mkn 421	0.03
Mkn 501	0.03
1ES 2344+514	0.044
Mkn 180	0.045
1ES 1959+650	0.047
PKS 0548-322	0.069
BL Lacertae	0.069
PKS 2005-489	0.071
RGB 0152+017	0.080
ON231 (W Comae	e) 0.102
PKS 2155-304	0.116
H1426+428	0.129
1ES 0806+524	0.138
1ES 0229+200	0.140
H2356-309	0.165
1ES 1218+30	0.182
1ES 0347-121	0.185
1ES 1101-232	0.186
1ES 1011+496	0.212
PG 1553+113	0.25-0.78

1) $GeV \longrightarrow FSRQs$; TeV \longrightarrow BL Lacs (possible bias?)

1) $GeV \longrightarrow FSRQs$; TeV $\longrightarrow BL Lacs$ (possible bias?)

2) No Blue powerful FSRQs -> no "TeV FSRQs"

Outliers?

Maraschi et al. 2008

1) $GeV \longrightarrow FSRQs$; TeV $\longrightarrow BL Lacs$ (possible bias?)

2) No Blue powerful FSRQs -> no "TeV FSRQs"

3) Extremely powerful (high-z) FSRQs: not detected by EGRET, OK for Fermi

Maraschi et al. 2008

1) $GeV \longrightarrow FSRQs$; TeV $\longrightarrow BL Lacs$ (possible bias?)

2) No Blue powerful FSRQs -> no "TeV FSRQs"

3) Extremely powerful (high-z) FSRQs: not detected by EGRET, OK for Fermi

4) Debeamed and intrinsically less powerful sources (more numerous!): low luminosity RED (GeV) blazars are expected: *Fermi*

See also Landt at al. 2008

The physical sequence

By modeling, we find physical parameters in the comoving frame.

 γ_{peak} is the energy of electrons emitting at the peak of the

Ghisellini et al. 1998, 2002

A new (theoretical) sequence

- Old one: based on 1 parameter: the observed luminosity
- Now: info on mass and accretion rate (spin? not yet)
- Info on jet power vs disk luminosity
- Info on location of dissipation: must be at some distance from BH. One zone is dominant (internal shocks?)

The key ideas

- R_{diss} proportional to M_{BH} 1/2
- R_{BLR} proportional to (L_{disk})
- For $L_{disk}/L_{Edd} < L_c \rightarrow$ no BLR (BL Lacs)
- $L_B = \varepsilon_B P_{jet}$
- $L_e = \varepsilon_e P_{jet}$
- γ_{peak} propto U⁻¹; U^{-1/2}

The key ansatz

P_{jet} always proportional to M

Simple consequences

- R_{diss} propto M: R_{BLR} propto (L_{disk})^{1/2}
 for large M, ~low L_{disk} → R_{diss} > R_{BLR}
- $\bullet \rightarrow$ Blue quasars!

Simple consequences

- R_{diss} propto M; R_{BLR} propto (L_{disk})^{1/2} for large M, ~low L_{disk} → R_{diss} > R_{BLR}
 → Blue guasars!
 - Small M, small L_{jet}, large B
- \rightarrow Low power, red quasars

VHE emission of FSRQs

3C 279, z=0.536

Costamante & 66 2002

