What do supernova remnants interacting with molecular clouds reveal

for the H.E.S.S. Collaboration

* LPTA, Montpellier, x LPNHE, Paris, + MPIK, Heidelberg, ° APC, Paris
Supernova remnants and cosmic rays

• Blast waves passing through the interstellar medium
 ⇒ the plausible particle accelerators at work in the Galaxy

• First-order Fermi acceleration mechanism
 – gain energy by multiple passage through the supersonic shock
 – expect ~ 10% of the explosion energy accelerates hadrons
 – enough power to compensate cosmic-ray escape from the Galaxy

• We miss an undisputable experimental evidence
 ⇒ very high energy γ rays are good tracers for such mechanism
The High Energy Stereoscopic System

• Four Imaging Atmospheric Cherenkov Telescopes
• Khomas Highlands of Namibia at 1800 m a. s. l.
 Southern hemisphere => inner Galactic plane => most emitters

• Completed in December 2003
 => more than 4 years in full configuration mode
The H.E.S.S. telescope

- 5° field of view, fine grain, fast readout cameras
- Detects Cherenkov light from atmospheric showers in stereoscopic mode

- Resolution: $\Delta \theta \sim 0.15^\circ$
- Energy range: 0.2 - 50 TeV; $\Delta E/E \sim 15\%$
Particle acceleration in shell-type SNRs

\[\gamma \] rays may come from:
- electrons in \(~a few \mu G\)
- hadrons in \(~100 \mu G\)

\[\Rightarrow \] hadron acceleration is not proved

First shell resolved in VHE \[\gamma \] rays
- Spectral index close to 2 up to 30 TeV
- \[\Rightarrow \] particles accelerated beyond 100 TeV
- Correlation with non-thermal X rays

Spectra differ below 100 GeV:
- GLAST FGST will help disentangling these processes
Molecular clouds probe cosmic rays

- Molecular clouds host supernova remnants
 - **Natural association**: birth place of massive stars ending as SNe

- Matter provides a target for accelerated hadrons $\rightarrow \pi^0 \rightarrow \gamma \gamma$
 - We expect a correlation between matter density and γ-ray emission
 => CRs accelerators associated with dense clouds should help to discriminate them from electrons accelerators

- Molecular cloud detection
 - Rotational lines in radio (CO, CS)
 => line intensity proportional to H_2 column density (main component)
1720 MHz OH maser (10^{-17} TeV !)

- OH population inversion only via collisionnal pumping with H$_2$

 Specific conditions : $10^3 - 10^5$ cm$^{-3}$, $T \sim 25$ K - 200 K

 => A blast wave passing through a molecular cloud

 maser effect if line of sight tangent to blast wave

 Strong suppression outside these temperature and density ranges

 => No detection does not mean no shocked cloud

- BUT ! Detection means true interaction of SNR with MC

 No fake associations due to imprecise distance determination

 Several surveys towards SNRs in the 1720 MHz line

- 18 SNRs showed 1720 MHz OH maser emission line

 Not exhaustive ... More surveys needed
The W28 (SNR G6.4-0.1) field

- Complex region in MWL
 - Several SNRs
 - Star formation regions
 - H" ii regions
- Northern excess coincident with EGRET source
- Interaction of the remnant with a dense molecular cloud seen in NANTEN CO observations
 - Northern gamma-ray emission coincident
 => Energy compatible with CRs accelerated by the SNR and interacting with the cloud
 => hadronic scenario likely
 - 2% Crab flux
HESS J1714-385 & CTB 37A

- Recently discovered by H.E.S.S.
 - Close to RX J1713.7-3946
 - Coincident with SNR G348.5+0.3 (CTB 37A)
 - Spectral index: $\Gamma = 2.30 \pm 0.13$
 - Extended source: $\sigma \sim 4'$
 - 3% Crab flux

3EG J1714-3857 counterpart?

Spectral compatibility

Fabrice Feinstein, SCINEGHE 2008, Padova, October 8 - 10, 2008
Cosmic rays hitting molecular clouds?

- SNR interacting with several molecular clouds
 - OH masers (1720 Mhz)
 - Dense molecular clouds detected in CO observations
- Hadronic scenario possible
 - Gamma-ray energetics compatible with CRs accelerated by CTB 37A

 => [4% - 30%] of the SN explosion energy into CRs

Aharonian et al. A&A in press
arXiv: 0803.0702
Recent X-ray observations
- Chandra & XMM-Newton

Thermal emission from the interior of the remnant
- Possibly associated with CTB 37A

PWN candidate discovered coincident with the remnant
- X-ray luminosity implies a spin-down luminosity around 10^{37} erg/s, rather powerful
 => ~0.1% conversion in γ rays
 => Leptonic scenario possible
HESS J1745-303

- Discovered in 2004: Galactic scan
 - 2005–2007: statistics increase
 ⇒ complex morphology, possibly multiple
 ⇒ unidentified
- Power law of index $\Gamma = 2.71 \pm 0.1$
- Candidate for part A?
 - Unidentified EGRET source (95% CL)
 - EGRET flux compatible
 - no XMM counterpart
 - 1.5% Crab flux

Fabrice Feinstein, SCINEGHE 2008, Padova, October 8 - 10, 2008
CRs accelerated by G359.1-0.5?

- SNR G359.1-0.5
 - H1 abs. => near GC : 7.6 ± 0.4 kpc
 - Blast wave interacts with a ring of matter
 - OH masers at 1720 MHz towards the rim of the SNR
 - CO observations [-100 km/s, -60 km/s], comp. with GC, reveal a coincidence with γ-ray source
 - Hadrons interact with the cloud ?
 \Rightarrow 15% to 60% of the SN explosion energy into cosmic rays

A new candidate: HESS J1923+141

- 2007 scan + 2008 pointed observations
- 16.5 hours live-time
- Peak significance of 6.7σ (oversampling 0.22°)
 ⇒ 4.4σ after trials

13CO (DENSE !) cloud at 60-80 km/s
maser at 70 km/s

- Source extends more than PSF

3 % Crab flux

⇒ Discovery of a new VHE γ-ray source by H.E.S.S.
HESS J1923+141: possible counterparts

- Morphological study is in progress
- Several possible counterparts
 - PWN detected by Chandra CXO J192318.5+1403035
 - Spin-down luminosity implied by the X-rays $\sim 3 \times 10^{36}$ erg/s at 6 kpc
 - \Rightarrow conversion of less than 1/1000 of this luminosity into gamma-rays
 - Shocked molecular clouds in the vicinity of SNR G49.2-0.7
 - Presence of 1720 MHz OH masers coincident with the rim of the remnant
 - Elongated molecular cloud coincident with the rim of the remnant and the masers
 - \Rightarrow hadronic scenario plausible

\Rightarrow new H.E.S.S. source coincident with an OH maser emitting SNR
Several SNR/MC associations have been observed by HESS

- Physical associations revealed by OH masers at 1720 MHz
- EGRET counterpart possible to lower energy for all of them
- A hadronic scenario is plausible for each case

=> Gamma-ray flux compatible with CRs accelerated by the SNR

A leptonic scenario can be considered for some of them

=> But the charges against the usual suspect accumulate!

- All these sources are in the 1% - 3% Crab flux range
- FGST and HESS 2 sensitivities very handy
- We must build CTA and we’ll see dozens of these sources

=> We may be able to map the CR density and confront models directly